Unit 3 (Electron Cloud) The Electron Cloud

Quantum Mechanics 1913 **Niels Bohr** Danish Physicist Theorized that electrons 6 protons circle the nucleus only in allowed fixed paths (orbits). e electror + proton Each orbit had a neutron Carbon atom specific amount of energy

Quantum Mechanics1926Heisenberg
SchrödingerGerman Physicist
Austrian PhysicistElectrons exist in ORBITALS,
a 3-D space around
the nucleus.zElectrons occupied a
general region based
on energy.z

Learning Target 1 Use Quantum Numbers to locate electrons within orbitals **Quantum Numbers (Orbitals)**

Quantum Numbers

It's all about... ENERGY and ELECTRON REPULSION

92% Accurate...

Principle Quantum Number (n)

Orbita	l Quantum	Number (l)	
S (ENF	hape of the (Orbital	
Orbital	Shape		
(s)	"Sphere"	Low Energy	
(p)	"Peanut"	_	
(d)	"Double Peanut"	- ♥	
(8)	"Flower"	High Energy	

Magnetic Quantum Number (m _t)						
3-D LOCATION						
(Referred to as	ORIEN '	TATION)				
-	Orbital	Location				
	(s)	One orientation				
	(p)	Three orientations				
	(d)	Five orientations				
► †	(f)	Seven orientations				

Quantum Mechanics Review							
Principle Quantum(n)	Distance from Nucleus $n = 1, 2, 37$						
Orbital Quantum()	Orbital Shape						
Magnetic Quantum(m _l)	3-D Location						
Spin Quantum(m _s)	↑or↓ Spin						

Quantum Mechanics Review

Principle Quantum(n)	Distance from Nucleus n=1, 2, 37
Orbital Quantum(<i>l</i>)	Orbital <mark>Shape</mark>
Magnetic Quantum(m /)	3-D Location
Spin Quantum(<mark>m</mark> s)	↑or↓ <mark>Spin</mark>

How M	Iany Elect	rons	?				
Each orientation can hold TWO ELECTRONS							
Orbital	Orientation	2 Electrons	Max Total				
(s)	1 orientation	(1) (2e ⁻)	= 2 electrons				
(p)	3 orientations	(3) (2e ⁻)	= 6 electrons				
(d)	5 orientations	(5) (2e ⁻)	= 10 electrons				
(f)	7 orientations	(7) (2e ⁻)	= 14 electrons				

Quantum Numbers											
Principle (n)	Orbital (l)			Mag	metic	(m1)			Orbital	Total	
n = 1	s	2				-			2	2	
n = 2	s	2							2	0	
	р	2	2	2]				6	8	
n = 3	S	2							2		
	р	2	2	2					6	18	
	d	2	2	2	2	2			10		
n = 4	s	2							2		
	р	2	2	2					6	32	
	d	2	2	2	2	2			10		
	f	2	2	2	2	2	2	2	14		

Configuration Rules

<u>Aufbau Principle</u>

Electrons must fill up LOWEST energy first.

Hund's Rule

Each orientation must have **one electron before** electrons can be **paired up**.

Pauli Exclusion Principle

Paired electrons must have opposite spins.

Orbital Notation	HOMEWORK
1. Beryllium	Be
2. Carbon	С
3. Argon	Ar

Electron Configuration Notation

Write the Configuration Notations:

- 1. Carbon (**C**)
- 2. Magnesium (Mg)
- 3. Chlorine (Cl)
- 4. Potassium (K)
- 5. Bromine (**Br**)

0 = 8e ⁻	15° 25° 2p4
AL = 13e-	152 Z52 Zp6 352 3p1
Fe = 26e-	ls" 2s" 2p" 3s" 3p" 4s" 3d"
As = 33e-	1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p3
Ba = 56 e=	15° 25° 26° 35° 36° 45° 321° 46° 55° 421° 56° 65°
I = 53 e-	15° 25° 26° 35° 36° 45° 321° 46° 55° 421° 56 5

I H Is	Electron Configurations in the Perodic Table																
3 Li	4 Be											5 B	6 C	N.	8	9 F	10 Ne
28	12											13	14	15	р 16	17	18
Na	Mg											AI	Si	P 3	S	CI	Ar
19 1	20 Co	21	22	23	24 Cm	25	26 Ea	27 Co	28	29	30	31	32	33	34	35 D.,	36
45	→ Ca	×	- 11		er	IVIII .	d	CO	i Ni	Ca	→	4	Ge	AS	p	ы	
37 Rb	38 Sr	39 Y	40 Zr	AI Nb	42 Mo	43 Te	H4 Ru Hd	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53	Xe Xe
55 Cs	56 Ba	57 L.a	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112	113	114		70		Ť.
/8	-	-									-	~			/P		
				58 Ce	59 Pr	Nd Nd	o1 Pm	62 Sm	63 Eu	64 Gd	Tb	00 Dy	67 Ho	68 Er	Tm	70 Yb	Lu
ter front for			1	90) Th	01 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
iy: sante Fa	0		1				12				<u>64</u>						

TABLE 6.3	TABLE 6.3 Electron Configurations of Several Lighter Elements						
Element	Total Electrons	Orbital Diagram	Electron Configuration				
		1s 2s 2p 3s					
ы	3	11 1	1s ² 2s ¹				
Be	4		1s ² 2s ²				
в	5		1s ² 2s ² 2p ¹				
с	6		1s ² 2s ² 2p ²				
N	7		1s ² 2s ² 2p ³				
Ne	10	11 11 11 11 1	1s ² 2s ² 2p ⁶				
Na	11		1s ² 2s ² 2p ⁶ 3s ¹				
		Copyright © 2009 Pearson Prentice Hall, Inc.					

Mor	nday Nov 4 Bel	ll Ringer					
Write the CONFIGURATION NOTATION for each of element using only the PERIODIC TABLE							
1.	M agnesium	Mg					
2.	Sulfur	S					
3.	Titanium	Ti					
4.	Selenium	Se					
5.	Gold	Au					

Gen Chem Bell Ringer

Prepare Yourself! QUIZ

Quantum Numbers (n, l, m_l, m_s)

Orbital Notation (arrows)

Configuration Notation (superscripts)

Orbital Fill Rules (Aufbau, Hund, Pauli)

Learning Target 3 Relate wavelength and frequency to the energy in an electron

Light as a Wave

8

Electromagnetic Spectrum THE ELECTRO MAGNETIC SPECTRUM Wavelength (metres) Radio Microw Infrared Visible Ultraviolet X-Ray Gamma Ray ave 103 10-10 10-12 10-2 10-6 10-5 10-8 \sim Frequency (Hz) 104 1012 1015 1020 101 1018 Low Energy High Energy Green Blue Red Orange Yellow Indigo Viol et

Light as a Wave Quiz

Light as a PARTICLE Max Planck Quantum Theory Light also acts like a PARTICLE. Objects gain or lose energy in small specific amounts. Max Planck Albert Einstein QUANTUM PHOTON Gained or Lost Energy by an atom. LIGHT energy given off.

<text>

Spectroscopy

- Energy is absorbed by electrons... they become excited... and then go back to their ground state...
- 1. Releasing wavelengths that are characteristic for that substance.
- 2. As distinct as fingerprints.

Spectrosc	ору		
Spectrum of Gaseous Neb	oula		
	Hydrogen		
	Helium		
	Sodium		
	Neon		

Light Duality

LIGHT IS A

Gen Chem November 10

PREPARE YOURSELF!

One Day Exam

