General Chemistry – Unit 3 (Electron Cloud Structure) Exam Review

Learning Target 1 Use QUANTUM NUMBERS to help describe the location of electrons.

- 1. Describe the difference between a Bohr <u>orbit</u> and a Heisenberg/Schrödinger <u>orbital</u>. Which theory states you cannot find the exact location of an electron?
- 2. Fill in the following table with the correct information about **QUANTUM NUMBERS**.

	Abbreviation	
	(n <i>, ℓ,</i> m _ℓ , m _s)	Description
Principle		
Orbital		
Magnetic		
Spin		

- 3. Describe the difference between an energy SHELL and SUBSHELL.
- 4. For each of the following energy shells, list the specific subshells (s,p,d,f) found in that energy level
 - a. n = 1
 - b. n = 2
 - c. n = 3
 - d. n = 4
- 5. How many orientations (X Y Z axis) and electrons are possible for each subshell?
 - a. (s) subshell
 - b. (p) subshell
 - c. (d) subshell
 - d. (f) subshell
- 6. Which shell has <u>more energy</u>: n = 3 or n = 6? Justify your answer.

General Chemistry – Unit 3 (Electron Cloud Structure) Exam Review

Learning Target 2 Use ELECTRON CONFIGURATION to illustrate the electron cloud.

- 7. Define the following rules/principles for writing electron configurations.
 - a. Aufbau Principle.
 - b. Hund's Rule.
 - c. Pauli Exclusion Principle.
- 8. Draw the **ORBITAL NOTATION** (arrows $\uparrow\downarrow$) for the following elements.
 - a. Carbon (C)
 - b. Aluminum (Al)
 - c. Iron (Fe)
- 9. Write the **CONFIGURATION NOTATION** (superscripts, ns²) for the following elements.
 - a. Chlorine (Cl)
 - b. Zirconium (**Zr**)
 - c. Antimony (Sb)
- 10. Identify which rule/principle is violated in the following diagram. Justify your answer.

 $\frac{\uparrow\downarrow}{1s} \quad \frac{\uparrow\downarrow}{2s} \quad \frac{\uparrow\uparrow}{2p} \quad \frac{\uparrow\downarrow}{1s} \quad \frac{\uparrow\downarrow}{3s}$

- 11. What is the highest occupied subshell for each of the following element?
 - a. Rubidium (Rb)
 - b. Potassium (K)
 - c. Nickel (Ni)

- 12. How did Bohr describe the electron movement around the nucleus? Draw a diagram.
- 13. Assume the following movements of electrons in the atom
 - Electron **A** moves from n = 1 to n = 3Electron **B** moves from n = 3 to n = 5Electron **C** moves from n = 6 to n = 2Electron **D** moves from n = 4 to n = 1
 - a. Which electron(s) will have an emission spectrum?
 - b. Which electron(s) have the greatest change in energy?
- 14. Describe LIGHT DUALITY in terms of how light behaves.
- 15. Describe the relationship between <u>wavelength</u> and <u>frequency</u>. Draw a diagram.
- 16. Explain how <u>energy</u> affects both wavelength and frequency.
- 17. If Radiation X has a longer wavelength than Radiation Z, which radiation has a higher frequency?
- 18. Explain the difference between a ground-state and excited-state electron.
- 19. How can an electron go from ground-state to excited-state?
- 20. Explain the difference between a **QUANTUM** and a **PHOTON**.