Unit 2, Learning Target 1 Understand how the idea of the atom has changed over time. The History of the Atom

The Greeks

DEMOCRITUS

All things were made of TINY invisible, indestructible PARTICLES

(Greek "atomos" = indivisible)

ARISTOTLE

Pre-John DaltonJOSEPH PROUST
Law of Definite ProportionsANTOINE LAVOISIER
Law of Conservation of MassLEMENTS form COMPOUNDS
in fixed ratios.Matter is neither created
nor destroyed.NaCl = 1 Na + 1 Cl
 $H_2O = 2 H + 1O$ Mercury (I) oxid
Mercury (1) oxid<br/

Early Atomic Theory

Dalton developed:	<u>Examples</u>
Law of <u>Multiple</u> Proportions	$\begin{array}{c} A + B \ \rightarrow \ AB \\ \mathbf{1g} \ \mathbf{3g} \ \mathbf{4g} \end{array}$
Compounds in FIXED RATIOS	$\Lambda + 2B \rightarrow \Lambda B$
-And-	1 2(3) 7
Reactant mass = Product Mass	$2A + 3B \rightarrow A_2B_3$ 2(1) 3(3) 11

Dalton's Early Atomic Theory

- 1. A matter is made of **ATOMS**.
- 2. (a) Atoms of the same element are identical.(b) Atoms of different elements are different.
- 3. Atoms can't be subdivided, created or destroyed
- 4. Atoms make compounds in **FIXED RATIOS**.
- 5. Atoms are combined, separated or rearranged to form compounds.

Discovery of Electrons

J.J. Thompson (1897)

Concluded that the rays in the tube were composed of negatively charged particles – "ELECTRONS"

YouTube Clip

Veritasium - Cathode Ray Tube EXPERIMENT

http://www.youtube.com/watch?v=2xKZRpAsWL8

http://www.youtube.com/watch?v=P18ejei5Uf4

J.J. Thompson Reasoned...

1. Since atoms are neutral there must be a positively charged particle.

"Plum Pudding Model"

2.Because the mass of an electron is so small there must be other particles in an atom.

Discovery of Nucleus

Composition of Nucleus

Proton Positive charge = negative charge. Mass greater than the electron.

Neutron Electrically neutral. Mass equivalent to the proton. (Rutherford 1920, Chadwick 1932)

Discovery of Nucleus

Composition of Nucleus

- ProtonPositive charge = negative charge.Mass greater than the electron.
- Neutron Electrically neutral. Mass equivalent to the proton. (Rutherford 1920, Chadwick 1932)

General Chemistry Unit 2 (Atomic Structure)
Parts of the Atom

Isotopes and Atomic Number				
Isotope $\rightarrow \rightarrow \rightarrow$ Same #p ⁺ but different #n ⁰ .				
	Isotop	es of HYD	ROGEN	
	${}_{1}^{1}H$ $p^{+} = 1$	² ₁ H	³ ₁ H	
SAME element	n° = 0	n" = 1	n" = 2	
-BUT-	•	9	0	
DIFFERENT mass	Promotile .	Barna and	Bran, and	
	99.985% abundance Legend: p=proton on=neut	0.015% abundance	negligible abundance	

Isotope Notation	
Hyphen Notation	Nuclear Notation
Symbol – <mark>Atomic Mass</mark>	Atomic Mass Symbol
U - 235 p ⁺ 92 nº <u>143</u> e ⁻ 92	²³⁵ U = Atomic Number 92 p ⁺ 92 n ⁰ <u>143</u> e ⁻ 92
U - 238 p⁺92 nº <u>146</u> e⁻92	²³⁸ U = Atomic Number 92 p ⁺ 92 n ⁰ <u>146</u> e ⁻ 92

p ⁺ n ⁰ e ⁻ Homework						
Element Name	Element Symbol	Mass Number	Atomic Number	Protons	Neutrons	Electrons
Ex. Boron	В	11	5	5	6	5
1. Sodium	Na	24	11	11	13	11
2. Gallium	Ga	68	31	31	37	31
^{3.} Yttrium	Y	89	39	39	50	39
12 Magnesium (Mg) M	a - 24				
12. Magnesium (Mg		g - 24 g - 25	12	1	2	12
		g - 25	12	1	3	12
	M	g – 26	12	1	4	12

Beanium (Bn) Exploration

Beanium (Bn) Exploration

Count them, mass them, record the data!

Bn Group	Number of Atoms	Total Mass of Isotope
1		
2		
3		
Total Number of (Group 1+2+3)	f Atoms	

YouTube Clip

WKRP in Cincinatti – Explain the Atom http://www.youtube.com/watch?v=hhbqIJZ8wCM

Unit 2, Learning Target 4 Relate mass to the number of atoms or moles in a substance

Average Atomic Mass

Atomic Mass

Parts of the Atom

proton neutron	Pa
	Pr
nucleus	Ne
electron	Ele

Particles	Mass (g)	Mass (amu)
Proton	1.673 X 10 -24	1 amu
Neutron	1.675 X 10 -24	1 amu
Electron	9.110 X 10 -28	0 amu

Mass Number vs. Atomic Mass

MASS	NUN	IBER	ΑΤΟΙ	MIC MASS
Total number of PROTONS and NEUTRONS in the nucleus of an isotope		Weighted a verage of all the ISOTOPE MASS NUMBERS		
Example:			Example	2:
Mg-24 Mg-25 Mg-26	12 p⁺ 12 p⁺ 12 p⁺	12 nº 13 nº 14 nº	Mg-24 Mg-25 Mg-26	78.99% 10.00% 11.01%

= 24.31 amu

Atomic Mass 1

Calculate the average atomic mass of copper if...

69.17% of Copper has a mass of 62.94 amu.30.83% of Copper has a mass of 64.93 amu.

Atomic Mass

Calculate the average atomic mass of copper if...

(1) Change all percents back to decimals

([%])

- (2) Multiply each decimal by AMU mass.
- (3) Add the isotopes together.

Double check with the Periodic Table.

Atomic Mass 1

<u>Calculate the average atomic mass of copper if...</u> 69.17% of Copper has a mass of 62.94 AMU 30.83% of Copper has a mass of 64.93 AMU.

69.17% = (0.6917) 30.83% = (0.3083)

Atomic Mass 2

<u>Calculate the average atomic mass of magnesium</u> Magnesium-24 is 78.99% abundant Magnesium-25 is 10.00% abundant

Magnesium-26 is 11.01% abundant

Atomic Mass 3

 $\underline{Calculate the average atomic\ mass\ of\ Iodine\ if}...$

 $^{127}I = 80\%$, $^{126}I = 17\%$ and $^{128}I = 3\%$

Gen Chem Thursday Oct 02

Think/Pair/Share

THINK:	Individual Work (~20 minutes)
PAIR:	Choose a Partner (~15 minutes)
SHARE:	Class Discussion (Remaining Time)

Relative Measurement

Measurements to GROUP ITEMS.

12 eggs	= One Dozen
13 donuts	= One Baker's Dozen
144 pencils	= One Gross

Chemists use a relative measurement called

THE MOLE to determine the number of atoms in a sample.

Avogadro creates THE MOLE.

Lorenzo Romano Amedeo Carlo Avogadro

Equal volumes of two different gases would have the same number of particles.

Scientists dedicated the measurement by calling it **Avogadro's Number**

Avogadro's Number

Chemists later discovered that when the ATOMIC MASS (in AMU) was set equal in GRAMS, every element and compound has 602,200,000,000,000,000,000,000 atoms or molecules.

Avogadro's Number <u>6.022 x 10</u>²³ particles = 1 mole.

The Mole

<u>1 mole</u> carbon (C)	= 6.022 x 10 ²³ atoms
1 mole water (H ₂ O)	= 6.022 x 10 ²³ molecules
<u>1 mole</u> elephants	= 6.022 x 10 ²³ elephants
<u>1 mole</u> donuts	= 6.022 x 10 ²³ donuts
<u>1 mole</u> dollars	= \$6.022 x 10 ²³
<u>1 mole</u> sand	= 6.022 x 10 ²³ grains of sand (enough to cover Los Angeles 800 meters deep)

Intro to THE MOLE videos

Stoichiometry (Start through 8:15) - Crash Course Chemistry

https://www.youtube.com/watch?v=UL1jmJaUkaQ

The Measured Mole					
1 mole = 0	1 mole = 6.022 x 10 ²³ of ANYTHING				
Apple	Brick	Truck			
۲					
1 mole Apples	1 mole Bricks	1 mole Trucks			
6.022×10^{23}	6.022×10^{23}	$6.022 \ge 10^{23}$			
Grams	Grams	Grams			

The Measured Mole			
1 mole = 6.022 x 10 ²³ of ANYTHING			
Helium	Oxygen	Iron	
2 He Helium 4.00	8 Oxygen 16.00	26 Fe Iron 55.85	
1 mole Helium	1 mole Oxygen	1 mole Iron	
6.022×10^{23}	6.022×10^{23}	6.022×10^{23}	
4.00 g	16.00 g	55.85 g	

Avogadro's Number		
Lithium (Atomic Number 3)		
6.941 amu	= mass of one ATOM (atomic mass)	
6.941 grams	= mass of one MOLE (molar mass)	
-or-	$= 6.022 \text{ x} 10^{23} \text{ atoms Li}$	
Aluminum (Atomic Number 13)		
26.98 amu	= mass of one ATOM (atomic mass)	
26.98 grams	= mass of one MOLE (molar mass)	
-or-	$= 6.022 \text{ x } 10^{23} \text{ atoms Al}$	

Relate MASS to ATOMS

- 1. How many moles are in 1.50 x 10¹² atoms lead (Pb)?
- 2. <u>How many grams</u> are in of 2.25 mol iron (Fe)?
- 3. How many grams are in 7.85 x 10²⁷ atoms zinc (Zn)?

Relate MASS to ATOMS

1. <u>How many moles</u> are in 1.50 x 10¹² atoms lead (Pb)?

2.49 x 10⁻¹² moles Pb

2. <u>How many grams</u> are in of 2.25 mol iron (Fe)?

165.66 grams Fe

3. <u>How many grams</u> are in 7.85 x 10²⁷ atoms zinc (Zn)?

852,654.43 grams Zn

Gen Chem Thursday Oct 09

Think/Pair/Share

THINK:	Individual Work (~20 minutes)	
PAIR:	3 Different Pairs (~15 minutes)	

SHARE: Class Discussion (Remaining Time)