The Greeks
 The Greeks

Unit 2, Learning Target 1
Understand how the idea of the atom has changed over time.
The History of the Atom

Pre-John Dalton

$$
\begin{aligned}
& \text { Law of Definite Proportions } \\
& \text { ANTOINE LAVOISIER } \\
& \text { Law of Conservation of Mass } \\
& \text { ELEMENTS form COMPOUNDS } \\
& \text { in fixed ratios. } \\
& \text { Matter is neither created } \\
& \text { nor destroyed. } \\
& \mathrm{NaCl}=1 \mathrm{Na}+1 \mathrm{Cl} \\
& \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}+1 \mathrm{O}
\end{aligned}
$$

Dalton's Early Atomic Theory

1. A matter is made of ATOMS.
2. (a) Atoms of the same element are identical.
(b) Atoms of different elements are different.
3. Atoms can't be subdivided, created or destroyed
4. Atoms make compounds in FIXED RATIOS.
5. Atoms are combined, separated or rearranged to form compounds.

Early Atomic Theory

Dalton developed:
Law of Multiple Proportions
Compounds in FIXED RATIOS
-And-
Reactant mass = Product Mass

Examples	
$A+B \rightarrow A B$	
$1 \mathrm{~g} \mathrm{3g}$	
$A+2 B$	
1 2(3)	7
$2 A+3 B$	$\mathrm{A}_{2} \mathrm{~B}_{3}$
2(1) 3(3)	11

Discovery of Electrons

J.J. Thompson (1897)

Concluded that the rays in the tube were composed of negatively charged particles - "ELECTRONS"

YouTube Clip

Veritasium -Cathode Ray Tube EXPERIMENT

http://www.youtube.com/watch?v=2xKZRpAsWL8
http://www.youtube.com/watch?v=P18ejei5Uf4

Discovery of Nucleus

Ernest Rutherford (1918)

Gold Foil Experiment

Discovery of Nucleus

Composition of Nucleus

Proton Positive charge=negativecharge. Mass greater than the electron.

Neutron Electrically neutral. Mass equivalent to the proton. (Rutherford 1920, Chadwick 1932)

J.J. Thompson Reasoned...

1. Since atoms are neutral there must be a positively charged particle.
"Plum Pudding Model"
"PlumPudding Mode

2.Because the mass of an electron is so small there must be other particles in anatom.

Discovery of Nucleus

Ernest Rutherford Gold Foil Experiment 1. The atoms is mostly empty space. 2. Positively charged particle. 3. Dense central region. pHET sim	

Crash Course - History of the Atom

Discovery of Nucleus

Composition of Nucleus

Proton Positivecharge=negativecharge. Mass greater than the electron.

Neutron Electrically neutral. Mass equivalent to the proton. (Rutherford 1920, Chadwick 1932)

General Chemistry Unit 2 (Atomic Structure)
Parts of the Atom

Atomic Particles

Element Notation

Hyphen Notation	Nuclear Notation
"Symbol" - Mass Number	Mass Number "Symbol"
Na-23	${ }^{23} \mathrm{Na}$
11	11
$\underset{\substack{\text { Sodium } \\ 23}}{\text { Na }}$	$\underset{\substack{\text { sodum } \\ 23}}{\mathbf{N a}}$
$\mathrm{p}^{+11} \mathrm{n}^{0} 12 \mathrm{e}-11$	$\mathrm{p}^{+11} \mathrm{n}^{0} 12 \mathrm{e}-11$

Counting $\mathrm{p}^{+} \mathrm{n}^{0} \mathrm{e}^{-}$

Z = Atomic Number \# Protons	
X = Atomic Symbol A = Mass Number \# Protons and Neutrons	

$p^{+} \mathrm{n}^{0} \mathrm{e}^{-}$Homework

Element Name	Element Symbol	$\begin{gathered} \text { Mass } \\ \text { Number } \end{gathered}$	Atomic Number	Protons	Neutrons	Electrons
Ex. Boron	B	11	5	5	6	5
1. Sodium	Na	24	11	11	13	11
2. Gallium	Ga	68	31	31	37	31
3. Yttrium	Y	89	39	39	50	39
12. Magnesium (Mg)	Mg-24		12			12
	Mg - 25		12			12
	Mg-26		12			12

Isotope Notation

Hyphen Notation
Symbol - Atomic Mass

$$
\begin{gathered}
U-235 \\
\mathrm{p}^{+} 92 \mathrm{n}^{0} \underline{143} \text { e-92 } \\
\mathrm{U}-238 \\
\mathrm{p}^{+} 92 \mathrm{n}^{0} \underline{146} \text { e-92}
\end{gathered}
$$

Nuclear Notation
Atomic Mass Symbol
${ }^{235} \mathrm{U}=$ Atomic Number 92
$\mathrm{p}^{+92} \mathrm{n}^{0} \underline{143}$ e-92
${ }^{238} U=$ Atomic Number 92
$\mathrm{p}^{+} 92 \quad \mathrm{n}^{0} \underline{146}$ e-92

YouTube Clip

WKRP in Cincinatti - Explain the Atom
 http://www.youtube.com/watch?v=hhbalIZ8wCM

Unit 2, Learning Target 4
Relate mass to the number of atoms or moles in a substance
Average Atomic Mass

Atomic Mass

Parts of the Atom

1 atom $\mathrm{Mg}=4.02 \times 10^{-23} \mathrm{~g}=0.0000000000000000000000402 \mathrm{~g}$

Mass Number vs. Atomic Mass

MASS NUMBER

Total number of PROTONS and NEUTRONS in the nucleus of an isotope

Example:

$\mathrm{Mg}-24$	$12 \mathrm{p}^{+}$	$12 \mathrm{n}^{0}$
$\mathrm{Mg}-25$	$12 \mathrm{p}^{+}$	$13 \mathrm{n}^{0}$
$\mathrm{Mg}-26$	$12 \mathrm{p}^{+}$	$14 \mathrm{n}^{0}$

ATOMIC MASS

Weighted average
of all the
ISOTOPE MASS NUMBERS
Example:

$\mathrm{Mg}-24$	78.99%
$\mathrm{Mg}-25$	10.00%
$\mathrm{Mg}-26$	11.01%
	$=24.31 \mathrm{amu}$

Atomic Mass 1

Calculate the average atomic mass of copper if... 69.17\% of Copper has a mass of 62.94 amu. 30.83% of Copper has a mass of 64.93 amu .

Atomic Mass

Calculate the average atomic mass of copper if...
(1) Change all percents back to decimals $\begin{gathered}(\text { Relative Abundance) } \\ \frac{\%}{100}\end{gathered}$
(2) Multiply each decimal by AMU mass.
(3) Add the isotopes together.

Double check with the Periodic Table.

Atomic Mass 1

Calculate the average atomic mass of copper if...
69.17\% of Copper has a mass of 62.94 AMU
30.83% of Copper has a mass of 64.93 AMU.
29
$69.17 \%=(0.6917)$
Cu
Copper
63.546
$30.83 \%=(0.3083)$

Atomic Mass 3

Calculate the average atomic mass of lodine if...

$$
{ }^{127} \mathrm{I}=80 \%,{ }^{126} \mathrm{I}=17 \% \text { and }{ }^{128} \mathrm{I}=3 \%
$$

Atomic Mass 2

Calculate the average atomic mass of magnesium

Magnesium- 24 is 78.99% abundant
Magnesium- 25 is 10.00% abundant
Magnesium- 26 is 11.01% abundant

12
Magnesium
24.31

Gen Chem Thursday Oct 02

Think/Pair/Share

THINK: Individual Work (~20 minutes)
PAIR: Choose a Partner (~ 15 minutes)
SHARE: Class Discussion (Remaining Time)

Consider the following...

Q1: Which would have more numbers?
Q2: Which would have more mass?

Relative Measurement

Meas urements to GROUP ITEMS.

$$
\begin{array}{ll}
12 \text { eggs } & =\text { One Dozen } \\
13 \text { donuts } & =\text { One Baker's Dozen } \\
144 \text { pencils } & =\text { One Gross }
\end{array}
$$

Chemists use a relative measurement called THE MOLE todetermine the number of atoms in a sample.

Avogadro's Number

Chemists later discovered that when the ATOMIC MASS (in AMU) was set equal in GRAMS, every element and compound has 602,200,000,000,000,000,000,000 atoms or molecules.

Avogadro's Number
$\underline{6.022 \times 10^{23}}$ particles $=1$ mole.

Avogadro creates THE MOLE.

Lorenzo Romano Amedeo Carlo Avogadro

Equal volumes of two different
gases would have the
same number of particles.

Scientists dedicated the measurement by calling it Avogadro's Number

The Mole

1 mole carbon (C) $\quad=6.022 \times 10^{23}$ atoms
1 mole water $\left(\mathrm{H}_{2} \mathrm{O}\right)=6.022 \times 10^{23}$ molecules
1 mole elephants $=6.022 \times 10^{23}$ elephants
1 mole donuts $\quad=6.022 \times 10^{23}$ donuts
1 mole dollars $\quad=\$ 6.022 \times 10^{23}$
1 mole sand $\quad \begin{aligned} & =6.022 \times 10^{23} \text { grains of } \\ & \text { (enough to cover Los Angeles } \\ & 800 \text { meters deep) }\end{aligned}$

Intro to THE MOLE videos

How big is a mole? (Not the animal, the other one.)

- Daniel Dulek, TED Ed YouTube

http://www.youtube.com/ watch?v=TEl4jeETVmg

The Measured Mole

1 mole $=6.022 \times 10^{23}$ of ANYTHI NG

Avogadro's Number

Lithium (Atomic Number 3)
$6.941 \mathrm{amu}=$ mass of one ATOM (atomic mass)
6.941 grams $=$ mass of one MOLE (molar mass) -or- $=6.022 \times 10^{23}$ atoms Li

Aluminum (Atomic Number 13)
$26.98 \mathrm{amu} \quad=$ mass of one ATOM (atomic mass)
26.98 grams $=$ mass of one MOLE (molar mass)
-or- $=6.022 \times 10^{23}$ atoms Al

Relate MASS to ATOMS

1. How many moles are in 1.50×10^{12} atoms lead (Pb)?
2. How manygrams are in of 2.25 mol iron (Fe) ?
3. How many grams are in 7.85×10^{27} atoms zinc (Zn) ?

The Measured Mole

1 mole $=6.022 \times 10^{23}$ of ANYTHI NG

Helium	Oxygen	Iron
2	8	26
$\underset{\text { Hetimim }}{\mathbf{H e}}$	O_{0}	Fe
1 mole Helium	1 mole Oxygen	1 mole Iron
6.022×10^{23}	6.022×10^{23}	6.022×10^{23}
4.00 g	16.00 g	g

Relate MASS to ATOMS

Avogadro's Number in a Scientific Calculator:
6.022 EE $23=6.022 \times 10^{23}$

Relate MASS to ATOMS

1. How many moles are in 1.50×10^{12} atoms lead (Pb)?
2.49×10^{-12} moles Pb
2. How manygrams are in of 2.25 mol iron (Fe)?
165.66 grams Fe
3. How many grams are in 7.85×10^{27} atoms zinc (Zn) ?

852,654.43 grams Zn

Gen Chem Thursday Oct 09

Think/Pair/Share

THINK: Individual Work (~20 minutes)
PAIR: 3 Different Pairs (~15 minutes)
SHARE: Class Discussion (Remaining Time)

