<u>Learning Target 1</u> Explain how the idea of the atom has changed over time.

1. Name the scientist associated with each discover.

	a.	Discovered the positively charged nucleus.						
	b.	Described the world as made of "tiny particles".						
	c.	Discovered the negatively charged electron.						
	d.	Created the Law of Multiple Proportions.						
	e.	Discredited Democritus saying there is no such thing as "atoms".						
2.	State th	e Law of Conservation of Mass. Give an example supporting your statement.						
3.	Which Law states that different compounds containing the same elements, the ratio of atoms in those compounds will be in small, whole number ratios?							
4.	Consider this reaction: $\mathbf{A} + \mathbf{BC} \rightarrow \mathbf{AC} + \mathbf{B}$. If 17 g (A) combines with 23 g (BC) to form (AC) and 13 g (B), how many grams of (AC) are formed?							
5.	List the	five parts of Dalton's Atomic Theory.						
	a.							
	b.							
	c.							
	d.							
	e.							
6.	many g	g of nitrogen (N) combines with $16.00\mathrm{g}$ oxygen (O) to form nitrogen monoxide (NO), how rams of nitrogen will be needed to combine with the same amount of oxygen to form dinitrogen de (N ₂ O)?						
7.	Which	experiment or device was used to discover the nucleus?						
8.	Which	experiment or device was used to discover the electron?						

<u>Learning Target 2</u> Describe the atom having a positive nucleus surrounded by electrons.

9. Fill in the following table concerning subatomic particles.

	Charge	Mass (amu)	Location
Protons			
Neutrons			
Electrons			

- 10. What subatomic particle is the smallest in size by mass?
- 11. Describe an isotope and give a specific example.
- 12. What is the average atomic mass of an element?
- 13. If you only know the number of neutrons in an atom, can you name that element?
- 14. If you only know the number of protons in an atom, can you name that element?
- 15. An element is determined by the number of (**protons**, **neutrons** or **electrons**).
- 16. Label the location of the protons, neutrons and electrons in an atom.

- 17. Element "E" has three isotopes. Calculate the average atomic mass of this unknown element.
 - E 51 (51.05 amu) is 15.75%.
 - E 53 (53.20 amu) is 75.25%.
 - E 52 (52.05 amu) is 9.00%.
- 18. Element "X" has three isotopes, 29.4% has a mass of 33.275 amu, 33.5% has a mass of 34.101 amu and 37.1% has a mass of 34.993 amu. Calculate the average atomic mass for Element "X".

Learning Target 3 Determine the number of protons, neutrons and electrons in an atom.

- 19. What information do you get from the ATOMIC NUMBER?
- 20. What information do you get from the ATOMIC MASS?
- 21. How do you calculate the number of protons in an atom?
- 22. How do you calculate the number of neutrons in an atom?
- 23. If an element has 59 protons with a mass number of 143, calculate the number of neutrons and electrons. Identify this unknown element.
- 24. Calculate the subatomic particles for isotopes of mercury (Hg).

a. Protons: Hg-200 _____ Hg-201 ____ Hg-202 ____

b. Electron: Hg-200 _____ Hg-201 ____ Hg-202 ____

c. Neutrons: Hg-200 _____ Hg-201 ____ Hg-202 ____

25. Fill in the following table.

		# protons	# neutrons	# electrons	Mass Number	Atomic Number
a.	Lithium				7	T (dille ci
b.					12	6
c.	Chlorine		18			
d.		47			108	
e.	Lead		126			
f.			21			20
g.				73	181	
h.	Radium		140			
i.	Tin				119	
j.					239	92

<u>Learning Target 4</u> Relate sample mass to the number of atoms and moles in a sample.

26. What is Avogadro's Number? Give the numeric value.

27. What is a mole?

28. Calculate how many grams of Yttrium (Y) are in a 1.50 moles sample.

29. Calculate how many moles of Chromium (Cr) in a 43.78 g sample.

30. Calculate the number of moles of Vanadium (V) in 2.64 x10²⁵ atoms.

31. How many atoms are in 108.62 g Beryllium (Be)?

32. Calculate the mass of Tungsten (W) are in 1.95×10^{21} atoms?