What is Chemistry?

Chemistry is...

Unit 1a Matter and Energy
Matter and Change

1. The study of matter (structure, properties)...
2. The changes that matter undergoes ... and
3. The energy involved inthose changes.

Learning Targets

1. Classify substances as either ELEMENTS or COMPOUNDS.
2. Identify the difference between and PHYSICAL and CHEMICAL change.

Matter and Its Properties.

Matter: Anything with mass and volume WeIght: versus MASS: The force of gravity The amount of on an object. matter in an object.
(measured with a scale) (measured with a balance)

What is Chemistry?

Chemistry involves Chemicals

Any substance with a definite composition.

Matter and Its Properties.

Atoms Smallest unit of matter

ELEMENT

CANNOT BE

broken down into a simpler substance
$\mathrm{Cu}, \mathrm{Fe}, \mathrm{Hg}, \mathrm{K}, \mathrm{Xe}$

CAN BE
broken down into simpler substances
$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaCl}, \mathrm{Fe}_{2} \mathrm{O}_{3}$

Matter and Its Properties.

MIXTURE COMPOUND

Separated by PHYSICAL Process

Separated by CHEMICAL Reaction

Physical Property

Measured without changing the substance

Matter and Its Properties.

T-Chart Group Activity

INTENSIVE -or - EXTENSIVE

$>$ Boiling Point	$>$ Weight	$>$ Malleability
$>$ Mass	$>$ Energy	$>$ Length
$>$ Volume	$>$ Elasticity	$>$ Conductivity
$>$ Freezing Point	$>$ Color	
$>$ Luster		

Matter and Its Properties.

Indicators of a CHEMICAL CHANGE

1. Color change.
2. Gas is given off. (bubbles)
3. Precipitate. (solid formed)

4. Change in energy. (HOT or COLD)
5. Light emission. (Light given off)

Unit 1b Learning Targets

1. Classify substances as either elements or compounds.
2. Tell the difference between physical/chemical properties and changes.
3. Identify proper measurement techniques a nd possible errors.

Understand energy moves between a system and its surroundings.

Units of Measure.

Units of Measure.

The International System (SI). 1960s

Commonly used SI units in CHEMISTRY.

1. Length	meters	(m)
2.	Mass	kilograms

Units of Measure.

- The International System(SI) 1960s
- SI units PREFIXES.

Prefix	Symbol	Howmany ina base unit?
Nano-	n	$1,000,000,000$
Micro-	μ	$1,000,000$
Milli-	m	1,000
Centi-	c	100
Deci-	d	10

Prefix	Symbol	Howmany base units?
Kilo-	k	1,000
Mega-	M	$1,000,000$
Giga-	G	$1,000,000,000$
Example		$1 \mathrm{~km}=1000 \mathrm{~m}$ $1 \mathrm{Mg}=1,000,000 \mathrm{~g}$

Metric Conversion Mnemonic

Conversion Group Activity

1. Divide into PAIRS.
2. Each PAIR is assigned one DATA GROUP.
3. Each PAIR is responsible for organizing the data group from the
SMALLEST to LARGEST measurement.

Units of Measure.

Conversion Factor Practice.
Example 1 - Convert 22,000 g to kg .
Example 2 - Convert 0.0290 m to mm .
Example $\mathbf{3}$ - How many kilometers are in 2.34 miles?
Example 4 - How many meters are in 0.62 ft ?

Units of Measure.

Conversion Factors.

- Math used to relate 2 units that measure the same quantity (written as a fraction); Equal to 1.
- Example $1 \mathrm{~m}=1000 \mathrm{~mm} . \frac{\mathbf{1 m}}{\mathbf{1 , 0 0 0} \mathbf{m m}}$

The distance between the North and South Building is roughly 12, 672 inches. How many feet do you travel between class?

Conversion Group Activity

Length (White)	Mass (Yellow)	Volume (Green)
10 mm	10 mg	10 mL
$2.5 \times 10^{-3} \mathrm{hm}$	$2.5 \times 10^{-3} \mathrm{hg}$	$2.5 \times 10^{-3} \mathrm{hL}$
1.0 m	1.0 g	$12.0 \mathrm{fl} . \mathrm{oz}$.
17.2 dm	17.2 dg	$1 / 4$ gallon
$6 \mathrm{ft} 1 in.$.	1316 cg	1.0 L
1316 cm	1.2 oz.	17.2 dL
0.33 km	$1 / 4$ pound	1316 cL
$1 / 4$ mile	0.33 kg	0.33 kL

Thursday Sept 4

PREPARE YOURSELF! Homework Check over UNIT CONVERSIONS!

Unit 1 Matter and Energy
Accuracy vs. Precision Significant Figures

Using Scientific Measurement.

Accuracy

How closea set of measurements are to the CORRECT VALUE.

Precision

How closea set of
measurements are GROUPED regardless of being correct.

Accuracy vs. Precision

Mass $=13.6$ grams

	Trial 1	Trial 2	Trial 3	Average
Student 1	13.5			
Student 2	13.6			
Student 3	9.4			

Using Scientific Measurement.

Significant Figures.
All digits that occupy places for which ACTUAL measurement was made + the last estimated digit.

Significant means "important", so we are looking for all of the numbers that show the ACCURACY within each measurement

Significant Figures

How many sig figs? State the rule(s) [Proof]

1. 1234 kg
2. 0.023 L
3. 9010.0 mm
4. 0.0001 g
5. 1078.0010 mL
6. $1,020,010 \mathrm{~km}$

Significant Figures

How many sig figs? Sig fig rounding.

1. 1234
2. 0.023
3. 9010.0
30.495 g
4. 9010.0

-15.60 g

4. 0.0001
5. $1078.0010 \quad \frac{14.90 \mathrm{~g}}{3.1 \mathrm{~mL}}=\mathbf{4 . 8 0 6 4 5 1 6 1 3}$
6. $1,020,010$

$$
\Longrightarrow 4.8 \mathrm{~g} / \mathrm{mL}
$$

Using Scientific Measurement.

Scientific Notation.

How scientists show either BIG or SMALL numbers.

- $602,200,000,000,000,000,000,000=6.022 \times 10^{23}$

The decimal pointis always
located between the first
and second digit AND
the first digit must
be non-zero number.

.0000987
1.2.3.4.-5
6.5×10^{7}
9.87×10^{-5}

Using Scientific Measurement.

Using Scientific Measurement.

Experiments will always have errors.
(human, mechanical, environmental)
PERCENT ERROR (the lower the percent, the better) Determines the accuracy of the experiment.

Percent Error $=\frac{\mid \text { Lab Measurement }- \text { TRUE Value } \mid}{\text { TRUE Value }} \times 100$

What is ENERGY?

Energy Transfer.

HEAT Energy moves back and forth between a system and its surroundings.

Temperature: Average KE of the random motion of particles in a substance.

Energy Transfer.

Specific Heat Capacity (C_{p})

The ability for a substance to absorb heat.
LOW vs HIGH specific heat capacity

Metals	Nonmetals
Great Conductors	Poor Conductors
LOW heat capacity	HIGH heat capacity (Greater than 1.0)

Practice 1

Calculate the a mount of heat (in Joules) needed to raise $34 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ from $55^{\circ} \mathrm{C}$ to $67^{\circ} \mathrm{C}$.
$\mathbf{q}=(\mathbf{m})(\boldsymbol{\Delta T})\left(\mathbf{C}_{\mathbf{p}}\right) \quad \mathrm{q}=(34 \mathrm{~g})\left(\left[67-55^{\circ} \mathrm{C}\right]\right)(4.184)$
$q=(34 \mathrm{~g})\left(12^{\circ} \mathrm{C}\right)(4.184)$
$\mathrm{C}_{\mathrm{p}} \mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$q=1707.07 \mathrm{~J}$

Energy Units.

Energy Transfer.

$$
\begin{aligned}
& \boldsymbol{q}=(\mathrm{n})(\boldsymbol{\sim})\left(\mathrm{C}_{p}\right) \\
& \mathrm{q}=\quad \text { Heat }(\mathrm{J}) \\
& \mathrm{m}=\quad \text { Mass }(\mathrm{g}) \\
& \Delta T=\quad \text { Change in Temperature }\left(\Delta T=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \\
& \mathrm{C}_{\mathrm{p}}=\quad \text { Specific Heat Capacity (Given) }
\end{aligned}
$$

Practice 2

Calculate the amount of heat (in Joules) needed to raise 65 g copper from $30^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\mathbf{q}=(\mathbf{m})(\Delta \mathrm{T})\left(\mathbf{C}_{\mathrm{p}}\right) & \mathrm{q}=(65 \mathrm{~g})\left(\left[95-30^{\circ} \mathrm{C}\right]\right)(0.385) \\
\mathrm{C}_{\mathrm{p}} \mathrm{Cu}=0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} & \mathrm{q}=(65 \mathrm{~g})\left(65^{\circ} \mathrm{C}\right)(0.385) \\
\mathrm{q}=1626.63 \mathrm{~J}
\end{array}
$$

$q=(m)(\Delta T)\left(C_{p}\right)$

The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

1. 40.0 g of water is heated from $10.0^{\circ} \mathrm{C}$ to $30.0^{\circ} \mathrm{C}$.
2. 135.6 g of water is cooled from $95.8^{\circ} \mathrm{C}$ to $21.6^{\circ} \mathrm{C}$.
3. 30.0 g of al uminum is heated from $15.0^{\circ} \mathrm{C}$ to $35.0^{\circ} \mathrm{C}$.
4. 450.0 g of iron is cooled from $125.0^{\circ} \mathrm{C}$ to $45.0^{\circ} \mathrm{C}$.
5. 62.3 g of lead is heated from $21.7^{\circ} \mathrm{C}$ to $136.4^{\circ} \mathrm{C}$.

$q=(m)(\Delta T)\left(C_{p}\right)$

The specific heat of water is $4.184 \mathrm{~J} / \mathrm{gK}$.

1.	Specific Heat of Common Substances	
2.	Water (I)	$4.184 \mathrm{~J} /(\mathrm{g} \bullet \mathrm{K})$
3.	Aluminum	$0.897 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$
4.	Iron	$0.449 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$
5.	Lead	$0.129 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$

